Liquid Crystal Display

Abstract

A liquid crystal display includes a plurality of scan lines arranged in parallel, a plurality of data lines arranged in parallel and crossing the scan lines, and a plurality of switching devices respectively formed in the locations of the scan lines crossing the data lines, the switching devices connected with same scan line are arranged on the two sides of the scan line and are located in the corresponding pixel respectively, wherein each pixel includes two switching devices and one switching device is connected to the corresponding data line through the other switching device.

Claims

1 . A liquid crystal display having a plurality of gate lines, a plurality of data lines, and a plurality of pixels spatially arranged in a matrix, each pixel being defined between two neighboring gate lines and two neighboring data lines crossing the two neighboring gate lines, comprising: a plurality of switching devices formed in the pixels, the switching devices electrically connected with the same scan lines being arranged on the two sides of scan lines, wherein each pixel includes at least two switching devices, and one switching device is connected to a corresponding data line through another switching device; and a plurality of pixel electrodes electrically connected to the switching devices respectively. 2 . The liquid crystal display of claim 1 , wherein each of the switching devices comprises a transistor. 3 . The liquid crystal display of claim 1 further comprising a common electrode, wherein the common electrode and the scan lines are alternately arranged. 4 . A liquid crystal display, comprising: a plurality of scan lines; a plurality of data lines crossing the scan lines, wherein adjacent first data line and second data line and adjacent first scan line and second scan line define a pixel, wherein each pixel further comprises: a first sub-pixel electrode; a second sub-pixel electrode; a first transistor with a gate electrode electrically connected to the first scan line, a first source/drain electrode and a second source/drain electrode electrically connected to the first sub-pixel electrode; and a second transistor with a gate electrode electrically connected to the second scan line, a first source/drain electrode electrically connected to the first data line and a second source/drain electrode electrically connected to the second sub-pixel electrode and the first transistor's first source/drain electrode. 5 . The liquid crystal display of claim 4 , wherein the liquid crystal display further comprises a plurality of common electrodes, wherein the common electrodes and the scan lines are alternatively arranged. 6 . The liquid crystal display of claim 4 , wherein the data lines are substantially perpendicular to the scan lines. 7 . A drive method for driving a liquid crystal display, the liquid crystal display comprising a plurality of scan lines and a plurality of data lines, a plurality of pixels being defined by two neighboring scan lines and two neighboring data lines crossing the two scan lines, each pixel including a first sub-pixel with a first transistor electrically connected to a first scan line and a second sub-pixel with a second transistor electrically connected to a second scan line, and the first transistor being connected to a data line through the second transistor, the method comprises: providing a dual pulse signal to the scan lines sequentially, wherein the dual pulse signal includes a first pulse signal and a second pulse signal, and the first pulse signal is sent to the second scan line when the second pulse signal is sent to the first scan line; and providing a two-step signal to the data lines sequentially, the two-step signal including a first voltage signal and a second voltage signal, wherein the first voltage signal is written to the first sub-pixel and the second sub-pixel through the first transistor and the second transistor when the first scan line is driven by the second pulse signal and the second scan line is driven by the first pulse signal, and the second voltage signal is written to the second sub-pixel through the second transistor when the first scan line is not driven and the second scan line is driven by the second pulse signal. 8 . The drive method of claim 7 , wherein the pulse width of the first pulse signal is less than the pulse width of the second pulse signal. 9 . The drive method of claim 7 , wherein the pulse width of the first pulse signal is half of the pulse width of the second pulse signal. 10 . The drive method of claim 7 , wherein the second pulse signal is subsequent to the first pulse signal. 11 . The drive method of claim 7 , wherein the first voltage signal is less than or equal to the second voltage signal. 12 . The drive method of claim 7 , wherein the first voltage signal is larger than or equal to the second voltage signal. 13 . A drive method for driving a liquid crystal display, wherein the liquid crystal display comprises a plurality of scan lines and a plurality of data lines, adjacent data line and scan line define a pixel, wherein each pixel includes a first sub-pixel with a first transistor electrically connected to a first scan line and a second sub-pixel with a second transistor electrically connected to a second scan line, and the first transistor is electrically connected to a data line through the second transistor, the method comprises: providing a high level electric potential to the first scan line and the second scan line to write a first voltage signal transferred through the data line to the first sub-pixel and the second sub-pixel; and providing a low level electric potential to the first scan line and providing a high level electric potential to the second scan line to write a second voltage signal transferred through the data line to the second sub-pixel. 14 . The drive method of claim 13 , wherein the time for providing a high level electric potential to the first scan line is two times of the time for providing a high level electric potential to the second scan line. 15 . The drive method of claim 13 , wherein the first voltage signal is less than the second voltage signal. 16 . The drive method of claim 13 , wherein the first voltage signal is larger than the second voltage signal.
RELATED APPLICATIONS [0001] This application claims priority to Taiwan Application Serial Number 95125728, filed Jul. 13, 2006, which is herein incorporated by reference. FIELD OF THE INVENTION [0002] The present invention relates to a liquid crystal display, and more particularly, to a liquid crystal display with improved view angles. BACKGROUND OF THE INVENTION [0003] Liquid crystal displays have been used in various electronic devices. A Multi-Domain Vertically Aligned Mode (MVA mode) liquid crystal display was developed by Fujitsu in 1997 to provide a wider viewing range. In the MVA mode, a 160 degree view angle and a high response speed was achieved. However, when a user looks at this LCD from the oblique direction, the skin color of Asian people (light orange or pink) appears bluish or whitish. Such a phenomenon is called color shift. [0004] The transmittance-voltage (T-V) characteristic of the MVA mode liquid crystal display is shown in FIG. 1 . The vertical axis is the transmittance rate. The horizontal axis is the applied voltage. When the applied voltage is increased, the transmittance rate curve 101 in the normal direction is also increased. The transmittance changes monotonically as the applied voltage increases. In the oblique direction, the transmittance rate curve 102 winds and the various gray scales become the same. However, in the region 100 , when the applied voltage is increased, the transmittance rate curve 102 is not increased. That is the reason why the color shifts. [0005] A method is provided to improve the foregoing problem. According to the method, a pixel unit is divided into two sub pixels. The two sub pixels may generate two different T-V characteristics. By combining the two different T-V characteristics, a monotonic T-V characteristic can be realized. The line 201 in FIG. 2 shows the T-V characteristic of a sub-pixel. The line 202 in FIG. 2 shows the T-V characteristic of another sub-pixel. By combining the two different T-V characteristics of line 201 and line 202 , a monotonic T-V characteristic can be realized, as shown by the line 203 in FIG. 2 . Therefore, a pixel unit with two sub pixels and drive method thereof is required. SUMMARY OF THE INVENTION [0006] One object of the present invention is to provide a liquid crystal display with a wide view angle. [0007] Another object of the present invention is to provide a pixel with two sub pixels. [0008] One aspect of the present invention is directed to a liquid crystal display with a plurality of pixel unit that may be driven by a drive wave to form two different pixel electrode voltages in a pixel unit. [0009] Another aspect of the present invention is directed to a method for driving a liquid crystal display with a plurality of pixel unit, wherein each pixel unit has two sub pixels. [0010] According to an embodiment, the present invention provides a liquid crystal display, comprising: a plurality of data lines arranged in parallel to each other; a plurality of scan lines arranged in parallel to each other and crossing the data lines; and a plurality of switching devices respectively formed in the locations of the scan lines crossing the data lines, the switching devices connected with same scan lines are arranged on the two sides of a scan line and located in a corresponding pixel respectively, wherein each pixel includes two switching devices where one switching device is connected to the corresponding data line through another switching device. [0011] According to another embodiment, the liquid crystal display further comprises a plurality pixel electrodes connected to the switching devices respectively. [0012] According to another embodiment, the liquid crystal display further comprises a plurality of common electrodes, wherein the common electrodes and the scan lines are alternatively arranged. [0013] According to another embodiment, the present invention provides a liquid crystal display, comprising: a plurality of scan lines arranged in parallel to each other; a plurality of data lines arranged in parallel to each other and crossing the data lines, wherein adjacent first data line and second data line and adjacent first scan line and second scan line define a pixel, wherein each pixel further comprises: a pixel electrode; a first transistor with a gate electrode connected to the first scan line, a first source/drain electrode and a second source/drain electrode connected to the pixel electrode; and a second transistor with a gate electrode connected to the second scan line, a first source/drain electrode connected to the first data line and a second source/drain electrode connected to the pixel electrode and the first transistor's first source/drain electrode. [0014] According to another embodiment, the present invention provides a method for driving the foregoing liquid crystal display, the method comprises: providing a dual pulse signal to the scan lines sequentially, wherein the dual pulse signal includes a first pulse signal and a second pulse signal, and the first pulse signal is sent to the second scan line when the second pulse signal is sent to the first scan line; and provides a two-step signal to the data lines sequentially, the two-step signal includes a first voltage signal and a second voltage signal, wherein the first voltage signal is written to the first sub-pixel and the second sub-pixel through the first transistor and the second transistor when the first scan line is driven by the second pulse signal and the second scan line is driven by the first pulse signal, and the second voltage signal is written to the second sub-pixel through the second transistor when the first scan line is not driven and the second scan line is driven by the second pulse signal. [0015] Accordingly, a pixel unit in the present invention is divided into two sub-pixels. Each sub-pixel includes a thin film transistor, a liquid crystal capacitor and a storage capacitor. The two transistors in a pixel are connected to different scan lines. One of the two transistors is connected to the data line through another transistor. Therefore, two different pixel voltages are formed in a pixel. The color shift phenomenon may be eased by combining the two pixel voltages in a pixel. BRIEF DESCRIPTION OF THE DRAWINGS [0016] The foregoing aspects and many of the attendant advantages of this invention are more readily appreciated and better understood by referencing the following detailed description, when taken in conjunction with the accompanying drawings, wherein: [0017] FIGS. 1 and 2 illustrate the transmittance-voltage (T-V) characteristic of an MVA mode liquid crystal display; [0018] FIG. 3A illustrates a top view of a liquid crystal display according to the first embodiment of the present invention. [0019] FIG. 3B illustrates an enlarged schematic diagram of a pixel unit according to the first embodiment the present invention. [0020] FIG. 4 illustrates a drive waveform and the corresponding electric voltage of four adjacent sub pixels according to an embodiment of the present invention. [0021] FIG. 5 illustrates a drive waveform and the corresponding electric voltage of four adjacent sub pixels according to another embodiment of the present invention. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT [0022] FIG. 3A illustrates a top view of a liquid crystal display according to the first embodiment of the present invention. The liquid crystal display is composed of data lines D 1 , D 2 , D 3 , . . . , Dn and scan lines G 1 , G 2 , G 3 , . . . , Gn. The data lines and the scan lines are substantially perpendicular to each other. An adjacent data line and scan line define a pixel unit 303 . Each pixel unit includes a common electrode V com substantially parallel to the scan line. According to the present invention, the pixel unit 303 includes two sub-pixels 3031 and 3032 . Each sub-pixel 3031 or 3032 includes a storage capacitor Cst, a liquid crystal capacitor Clc and a thin film transistor. The storage capacitor Cst is composed of the pixel electrode and the common electrode. The liquid crystal capacitor is composed of the pixel electrode and the conductive electrode in the upper substrate (not shown in figure). The thin film transistor is formed near the location that the data line crosses the scan line. A data line drive integrated circuit 301 is used to control the data lines D 1 , D 2 , D 3 , . . . , Dn. A scan line drive integrated circuit 302 is used to control the scan lines G 1 , G 2 , G 3 , . . . , Gn. [0023] The storage capacitors and the liquid crystal capacitors in the sub pixels described in the following are indicated by different symbols. These symbols are not related to their capacitance. [0024] FIG. 3B illustrates an enlarged diagram of a pixel. The pixel 303 is defined by the data lines D n-2 , D n-1 and the scan lines G n-2 , G n-1 . A common electrode V com parallel to the scan line is placed between the scan line G n-2 and the scan line G n-1 . The pixel 303 is divided into two sub pixels. The sub pixel 3031 is located between the scan line G n-1 and the common electrode V com . The sub pixel 3032 is located between the scan line G n-2 and the common electrode V com . [0025] The sub-pixel 3031 includes a thin film transistor Q 1 . According to the thin film transistor Q 1 , the gate electrode is connected to the scan line G n-2 , the first source/drain electrode is connected to the data line D n-1 through the thin film transistor Q 2 located in the sub-pixel 3032 and the second source/drain electrode is connected to the pixel electrode P 1 . The storage capacitor C st1 is composed of the pixel electrode P 1 and the common electrode V com . The liquid crystal capacitor C LC1 is composed of the pixel electrode P 1 and the conductive electrode in the upper substrate (not shown in figure). [0026] The sub-pixel 3032 also includes a thin film transistor Q 2 . According to the thin film transistor Q 2 , the gate electrode is connected to the scan line G n-1 , the first source/drain electrode is connected to the data line D n-1 and the second source/drain electrode is connected to the pixel electrode P 2 . The storage capacitor C st2 is composed of the pixel electrode P 2 and the common electrode V com . The liquid crystal capacitor C LC2 is composed of the pixel electrode P 1 and the conductive electrode in the upper substrate (not shown in figure). [0027] The thin film transistor Q 1 and the thin film transistor Q 2 act as switches. When a scan voltage is applied to the gate electrode of a thin film transistor, the data voltage in the data line is transferred to the second source/drain electrode and is written into the storage capacitor and the liquid crystal capacitor. In this invention, the thin film transistor Q 1 is not directly connected to the data line D n-1 . This thin film transistor Q 1 is connected to the data line D n-1 through the thin film transistor Q 2 . Therefore, when data is written into the storage capacitor C st1 and the liquid crystal capacitor C LC1 , the thin film transistor Q 1 and the thin film transistor Q 2 have to be conducted together. Accordingly, in the present invention, a voltage waveform in the scan line is used to control the thin film transistor Q 1 and the thin film transistor Q 2 and co-operates with the voltage waveform in the data line to make the two sub-pixels 3031 and 3032 have different pixel voltages. [0028] FIG. 4 illustrates a drive waveform and the corresponding electric voltage of four adjacent sub pixels according to an embodiment of the present invention. The drive waveform of the scan line is a dual pulsetype. The pulse width of the first pulse 4001 is less than the pulse width of the second pulse 4002 . In an embodiment, the pulse width of the first pulse 4001 is half the pulse width of the second pulse 4002 . The distance between the first pulse 4001 and the second pulse 4002 is equal to the pulse width of the first pulse 4001 . When scanning, the two drive waveforms output from adjacent scan lines may partially overlap. In this embodiment, the first pulse 4001 of the drive waveform output from one of the adjacent two scan lines may overlap the second pulse 4002 of the drive waveform output from the other scan line. In other words, the transistors connected with the two scan lines are conducted together in this case. The drive waveform of the data line is a two step drive waveform. The positive part of this drive waveform includes two drive voltage Va and Vb. The negative part of this drive waveform also includes two drive voltage −Va and −Vb. The absolute value of the drive voltage Va is larger than the absolute value of the drive voltage Vb. [0029] Referring to the FIG. 3A and FIG. 4 , during the time segment T 1 , the voltage state of both the scan line G n-1 and G n-2 are in a high level state. The voltage state of scan line G n is in a low level state. Therefore, the transistor Q 1 , Q 2 , Q 3 and Q 4 are turned on and the transistor Q 5 is turned off. In this case, the voltage −Vb in the data line D n-1 may charge the liquid crystal capacitors C LC2 , C LC3 and the storage capacitors C st2 , C st3 through the transistor Q 2 and Q 3 . At this time, the sub-pixel 3032 and the sub-pixel 3033 may present the pixel voltage, −Vb. The transistor Q 1 is connected to the data line D n-1 through the transistor Q 2 . Therefore, the voltage −Vb in the data line D n-1 may charge the liquid crystal capacitors C LC1 and the storage capacitors C st1 through the transistor Q 2 and Q 1 . At this time, the sub-pixel 3031 may also present the pixel voltage, −Vb. The transistors Q 4 is connected to the data line D n-1 through the transistors Q 5 . The liquid crystal capacitors C LC4 and the storage capacitor C st4 are not charged by the voltage −Vb because the the transistor Q 5 is turned off. Therefore, the sub-pixel 3034 presents a pixel voltage with a low level state. [0030] During the time segment T 2 , the voltage state of the scan line G n-2 is in a high level state. The voltage state of scan lines G n and G n-1 are in a low level state. Therefore, the transistor Q 1 and Q 3 are turned on and the transistor Q 2 , Q 4 and Q 5 are turned off. In this case, the voltage +Va in the data line D n-1 may charge the liquid crystal capacitor C LC3 and the storage capacitor C st3 through the transistor Q 3 . At this time, the sub-pixel 3033 may present the pixel voltage, +Va. The transistor Q 1 is connected to the data line D n-1 through the transistor Q 2 . Because the transistor Q 2 is turned off, the liquid crystal capacitors C LC1 and C LC2 and the storage capacitors C st1 and C st2 are not charged with the voltage +Va. At this time, the sub-pixel 3031 and the sub-pixel 3032 still present the pixel voltage, −Vb. On the other hand, because the transistor Q 4 is turned off, the liquid crystal capacitors C LC4 and the storage capacitors C St4 are also not charged with the voltage +Va. At this time, the sub-pixel 3034 still presents a pixel voltage with low level state. [0031] During the time segment T 3 , the voltage state of the scan line G n-2 is in a low level state. The voltage state of the scan lines G n and G n-1 are in a high level state. Therefore, the transistors Q 1 and Q 3 are turned off and the transistors Q 2 , Q 4 and Q 5 are turned on. In this case, the voltage +Vb in the data line D n-1 may charge the liquid crystal capacitor C LC2 and the storage capacitor C st2 through the transistors Q 2 and Q 5 . At this time, the sub-pixel 3032 may present the pixel voltage, +Vb. Because the transistor Q 1 is turned off, the liquid crystal capacitors C LC1 and the storage capacitors C st1 are not charged by the voltage +Vb. At this time, the sub-pixel 3031 still present the pixel voltage, −Vb. On the other hand, because the transistor Q 3 is turned off, the liquid crystal capacitors C LC3 and the storage capacitors C St3 are not charged by the voltage +Vb. At this time, the sub-pixel 3033 still presents the pixel voltage, +Va. The transistors Q 4 is connected to the data line D n-1 through the transistors Q 5 . Therefore, the liquid crystal capacitor C LC4 and the storage capacitor C St4 are charged by the voltage +Vb. At this time, the sub-pixel 3034 presents a pixel voltage, +Vb. [0032] During the time segment T 4 , the voltage state of the scan line G n and G n-2 are in a low level state. The voltage state of the scan line G n-1 is in a high level state. Therefore, the transistors Q 1 , Q 3 and Q 5 are turned off and the transistors Q 2 and Q 4 are turned on. In this case, the voltage −Va in the data line D n-1 may charge the liquid crystal capacitor C LC2 and the storage capacitor C st2 through the transistor Q 2 . At this time, the sub-pixel 3032 may present the pixel voltage, −Va. Because the transistor Q 1 is turned off, the liquid crystal capacitors C LC1 and the storage capacitors C St1 are not charged by the voltage −Va. At this time, the sub-pixel 3031 still presents the pixel voltage, −Vb. On the other hand, because the transistor Q 3 is turned off, the liquid crystal capacitors C LC3 and the storage capacitors C St3 are not charged by the voltage −Va. At this time, the sub-pixel 3033 still presents the pixel voltage, +Va. The transistor Q 4 is connected to the data line D n-1 through the transistors Q 5 . Because the transistor Q 5 is turned off, the liquid crystal capacitor C LC4 and the storage capacitor C St4 are not charged by the voltage −Va. At this time, the sub-pixel 3034 still presents a pixel voltage, +Vb. [0033] Accordingly, from the time segment T 1 to T 4 , at least two pixel voltages, −Vb and +Va, are presented in the pixel 303 together. Different pixel voltage may present different optical characteristics. Therefore, the color shift phenomenon may be eased by combining the two pixel voltages in a pixel. [0034] FIG. 5 illustrates a drive waveform and the corresponding electric voltage of four adjacent sub pixels according to another embodiment of the present invention. In this embodiment, the optical characteristic compensation is performed by combining the optical characteristics of the two sub-pixels respectively located on the two sides of a scan line. For example, in the FIG. 3A , the optical characteristics of the two sub-pixels 3033 and 3031 respectively located on the two sides of the the scan line G n-2 are combined to ease the color shift phenomenon. [0035] In this embodiment, the drive waveform of the scan line is also a dual-pulse type. The pulse width of the first pulse 4001 is less than the pulse width of the second pulse 4002 . In an embodiment, the pulse width of the first pulse 4001 is half of the pulse width of the second pulse 4002 . The distance between the first pulse 4001 and the second pulse 4002 is equal to the pulse width of the first pulse 4001 . When scanning, the two drive waveforms output from adjacent scan lines may partially overlap. In this embodiment, the first pulse 4001 of the drive waveform output from one of the adjacent two scan lines may overlap the second pulse 4002 of the drive waveform output from the other scan line. The drive waveform of the data line is a two step drive waveform. The positive part of this drive waveform includes two drive voltage Va and Vb. The negative part of this drive waveform also includes two drive voltage −Va and −Vb. The absolute value of the drive voltage Va is larger than the absolute value of the drive voltage Vb. Comparing with the FIG. 4 , the drive waveform of this embodiment is prior to the drive waveform in the FIG. 4 by a time segment T 1 . [0036] Referring to the FIG. 3A and FIG. 5 . During the time segment T 1 , the voltage state of both the scan line G n-1 and G n-2 are in a high level state. The voltage state of scan line G n is in a low level state. Therefore, the transistors Q 1 , Q 2 , Q 3 and Q 4 are turned on and the transistor Q 5 is turned off. In this case, the voltage +Va in the data line D n-1 may charge the liquid crystal capacitors C LC2 , C LC3 and the storage capacitors C st2 , Cst 3 through the transistors Q 2 and Q 3 . At this time, the sub-pixel 3032 and the sub-pixel 3033 may present the pixel voltage, +Va. The transistor Q 1 is connected to the data line D n-1 through the transistor Q 2 . Therefore, the voltage +Va in the data line D n-1 may charge the liquid crystal capacitors C LC1 and the storage capacitors C st1 through the transistor Q 2 and Q 1 . At this time, the sub-pixel 3031 may also present the pixel voltage, +Va. The transistors Q 4 is connected to the data line D n-1 through the transistors Q 5 . The liquid crystal capacitors C LC4 and the storage capacitor C st 4 are not charged by the voltage +Va because the transistor Q 5 is turned off. Therefore, the sub-pixel 3034 presents a pixel voltage the same as the prior voltage state, +Va. [0037] During the time segment T 2 , the voltage state of the scan line G n-2 is in a high level state. The voltage state of scan lines G n and G n-1 are in a low level state. Therefore, the transistors Q 1 and Q 3 are turned on and the transistors Q 2 , Q 4 and Q 5 are turned off. In this case, the voltage +Vb in the data line D n-1 may charge the liquid crystal capacitor C LC3 and the storage capacitor C st3 through the transistor Q 3 . At this time, the sub-pixel 3033 may present the pixel voltage, +Vb. The transistor Q 1 is connected to the data line D n-1 through the transistor Q 2 . Because the transistor Q 2 is turned off, the liquid crystal capacitors C LC1 and C LC2 and the storage capacitors C St1 and C st2 are not charged by the voltage +Vb. At this time, the sub-pixel 3031 and the sub-pixel 3032 still present the pixel voltage, +Va. On the other hand, because the transistor Q 4 is turned off, the liquid crystal capacitors C LC4 and the storage capacitors C St4 are also not charged by the voltage +Vb. At this time, the sub-pixel 3034 still presents a pixel voltage with a low level state. [0038] During the time segment T 3 , the voltage state of the scan line G n-2 is in a low level state. The voltage state of scan lines G n and G n-1 are in a high level state. Therefore, the transistors Q 1 and Q 3 are turned off and the transistors Q 2 , Q 4 and Q 5 are turned on. In this case, the voltage −Va in the data line D n-1 may charge the liquid crystal capacitor C LC2 and the storage capacitor C st2 through the transistors Q 2 and Q 5 . At this time, the sub-pixel 3032 may present the pixel voltage, −Va. Because the transistor Q 1 is turned off, the liquid crystal capacitors C LC1 and the storage capacitors C St1 are not charged by the voltage −Va. At this time, the sub-pixel 3031 still presents the pixel voltage, +Va. On the other hand, because the transistor Q 3 is turned off, the liquid crystal capacitors C LC3 and the storage capacitors C St3 are not charged by the voltage −Va. At this time, the sub-pixel 3033 still presents the pixel voltage, +Vb. The transistors Q 4 is connected to the data line D n-1 through the transistors Q 5 . Therefore, the liquid crystal capacitor C LC4 and the storage capacitor C St4 are charged by the voltage −Va. At this time, the sub-pixel 3034 presents a pixel voltage, −Va. [0039] During the time segment T 4 , the voltage state of the scan line G n and G n-2 are in a low level state. The voltage state of scan lines G n-1 is in a high level state. Therefore, the transistors Q 1 , Q 3 and Q 5 are turned off and the transistors Q 2 and Q 4 are turned on. In this case, the voltage −Vb in the data line D n-1 may charge the liquid crystal capacitor C LC2 and the storage capacitor C st2 through the transistor Q 2 . At this time, the sub-pixel 3032 may present the pixel voltage, −Vb. Because the transistor Q 1 is turned off, the liquid crystal capacitors C LC1 and the storage capacitors C St1 are not charged by the voltage −Vb. At this time, the sub-pixel 3031 still presents the pixel voltage, +Va. On the other hand, because the transistor Q 3 is turned off, the liquid crystal capacitors C LC3 and the storage capacitors C St3 are not charged by the voltage −Vb. At this time, the sub-pixel 3033 still presents the pixel voltage, +Vb. The transistor Q 4 is connected to the data line D n-1 through the transistors Q 5 . Because the transistor Q 5 is turned off, the liquid crystal capacitor C LC4 and the storage capacitor C St4 are not charged by the voltage −Vb. At this time, the sub-pixel 3034 still presents a pixel voltage, −Va. [0040] Accordingly, from the time segment T 1 to T 4 , at least two pixel voltages, Vb and Va, are respectively presented in the sub-pixel 3033 and sub-pixel 3031 . Different pixel voltage may present different optical characteristics. Therefore, the color shift phenomenon may be eased by combining the two pixel voltages in a pixel. [0041] Accordingly, a pixel unit is divided into two sub-pixels. Each sub-pixel includes a thin film transistor, a liquid crystal capacitor and a storage capacitor. The two transistors in a pixel are connected to different scan lines. One of the two transistors is connected to the data line through another transistor. Therefore, two different pixel voltages are formed in a pixel. The color shift phenomenon may be eased by combining the two pixel voltages in a pixel. [0042] As is understood by a person skilled in the art, the foregoing descriptions of the preferred embodiment of the present invention are an illustration of the present invention rather than a limitation thereof. Various modifications and similar arrangements are included within the spirit and scope of the appended claims. The scope of the claims should be accorded to the broadest interpretation so as to encompass all such modifications and similar structures. While a preferred embodiment of the invention has been illustrated and described, it will be appreciated that various changes can be made therein without departing from the spirit and scope of the invention.

Description

Topics

Download Full PDF Version (Non-Commercial Use)

Patent Citations (19)

    Publication numberPublication dateAssigneeTitle
    US-2003058376-A1March 27, 2003Fujitsu LimitedLiquid crystal display device and method of manufacturing the same
    US-2003095223-A1May 22, 2003Samsung Electronics Co., Ltd.Liquid crystal display
    US-2004070713-A1April 15, 2004Samsung Electronics Co., Ltd.Liquid crystal display and thin film transistor array panel therefor
    US-2004263448-A1December 30, 2004Jong Sang Baek, Sun Young KwonMethod and apparatus for driving liquid crystal display
    US-2005083319-A1April 21, 2005International Business Machines CorporationImage display device, pixel drive method, and scan line drive circuit
    US-2005122441-A1June 09, 2005Fumikazu ShimoshikiryohLiquid crystal display
    US-2006227095-A1October 12, 2006Kim Woo-Chul, Jun-Pyo Lee, Seung-Hwan Moon, Sun-Kyu SonGate drive device for display device and display device having the same
    US-2007018927-A1January 25, 2007Samsung Electronics Co., Ltd.Liquid crystal display
    US-2007229427-A1October 04, 2007Au Optronics Corp.Pixel driving method and flat panel display thereof
    US-4768084-AAugust 30, 1988Hitachi, Ltd.Solid-state imaging device with two-row mixing gates
    US-5648793-AJuly 15, 1997Industrial Technology Research InstituteDriving system for active matrix liquid crystal display
    US-6300977-B1October 09, 2001Ifire Technology Inc.Read-out circuit for active matrix imaging arrays
    US-6414665-B2July 02, 2002International Business Machines CorporationMultiplexing pixel circuits
    US-6756953-B1June 29, 2004Mitsubishi Denki Kabushiki KaishaLiquid crystal display device implementing gray scale based on digital data as well as portable telephone and portable digital assistance device provided with the same
    US-6850302-B2February 01, 2005Samsung Electronics Co., Ltd.Liquid crystal display and thin film transistor array panel therefor
    US-7113160-B2September 26, 2006Lg.Philips Lcd Co., Ltd.Method and apparatus of driving liquid crystal display device
    US-7116303-B2October 03, 2006Lg.Philips Lcd Co., Ltd.Apparatus and method of driving liquid crystal display device
    US-7355666-B2April 08, 2008Samsung Electronics Co., Ltd.Liquid crystal display and driving method thereof
    US-7612788-B2November 03, 2009Samsung Electronics Co., Ltd.Driving multiple sub-pixels from single gray scale data

NO-Patent Citations (0)

    Title

Cited By (8)

    Publication numberPublication dateAssigneeTitle
    JP-2015502560-AJanuary 22, 2015京東方科技集團股▲ふん▼有限公司画素構造及びその制御方法、並びにディスプレイパネル
    US-2009207113-A1August 20, 2009Samsung Electronics Co., Ltd.Display device and method of driving the same
    US-2009273592-A1November 05, 2009Au Optronics CorporationPixel circuit, display panel, and driving method thereof
    US-2013100106-A1April 25, 2013Au Optronics CorporationLiquid crystal display with color washout improvement and method of driving same
    US-8766970-B2July 01, 2014Au Optronics CorporationPixel circuit, display panel, and driving method thereof
    US-8797244-B2August 05, 2014Samsung Display Co., Ltd.Display device and method of driving the same
    US-8810491-B2August 19, 2014Au Optronics CorporationLiquid crystal display with color washout improvement and method of driving same
    US-9818368-B2November 14, 2017Boe Technology Group Co., Ltd.Pixel structure and control method thereof and display panel